Enforcing SBOMs through the Linux kernel with eBPF and IMA

Alex Crawford
EdgeBit, Inc.
San Francisco, California, USA
alex@edgebit.io

ABSTRACT

At build-time, we generate SBOMs and sign containers. But at
run-time, tools like Open Policy Agent and Kyverno only check
the signatures or Kubernetes Pod attributes, not the full contents.
Let’s go beyond only checking container signatures and explore
the possibility of checking an entire container against its software
bill of materials (SBOM) in real time.

This paper will discuss how features in the Linux kernel - In-
tegrity Measurement Architecture (IMA) and eBPF - could eventu-
ally be used on a cluster’s nodes to secure running containers and
potentially other software. We are aiming to provide this protec-
tion without requiring a reboot or installing non-standard kernel
modules. This would allow end users to protect machines via a
Kubernetes DaemonSet or systemd unit without a need to tweak
an operating system image or use a custom kernel.

CCS CONCEPTS

« Security and privacy — Vulnerability scanners; Virtualization
and security; Software security engineering.

KEYWORDS

Extended Berkeley Packet Filter (eBPF), Software Bill of Materi-
als (SBOM), Integrity Measurement Architecture (IMA), software
supply chain security, file integrity

ACM Reference Format:

Alex Crawford, Eugene Yakubovich, and Rob Szumski. 2023. Enforcing
SBOMs through the Linux kernel with eBPF and IMA. In Proceedings of the
2023 Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses (SCORED °23), November 30, 2023, Copenhagen, Denmark. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3605770.3625206

1 INTRODUCTION

Linux Integrity Management Architecture (IMA) [6] is a lesser-
known feature of the Linux kernel which is used to measure and
enforce file contents in a high-performance manner. IMA makes
use of filesystem extended attributes to record a digest or signature
and then checks it against the file contents whenever the file is
accessed. This is only useful for static files however, since legitimate
modification of file contents (e.g. updating /etc/resolv.conf)
would cause the IMA digest/signature to fail.

While it’s possible to write an IMA policy which protects a subset
of files while still allowing the rest to be modified, it wouldn’t
provide much security since an actor who can maliciously modify

This is the author’s version of the work. The pre-print is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in:
SCORED °23, November 30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0263-1/23/11.

https://doi.org/10.1145/3605770.3625206

Eugene Yakubovich
EdgeBit, Inc.
San Francisco, California, USA
eugene@edgebit.io

Rob Szumski
EdgeBit, Inc.
Richmond, Virginia, USA
rob@edgebit.io

. R

Security
attrs

Normal file read

 Allow read

Malicious overwrite =
attempt

------- file

11l

security
attrs

X Block overwrite

Figure 1: Protecting file integrity and blocking malicious file
overwrites

file contents can similarly modify extended attributes to match. The
extended attributes also need to be protected.

Filesystem extended attributes are typically protected by Ex-
tended Verification Module (EVM) [3], which compares a subset
of extended attributes against a digest or signature. This mecha-
nism isn’t always included in kernel builds though, and isn’t cur-
rently present in Google’s Container-Optimized Operating System
or Amazon Linux. There exists another way to potentially limit
modification of extended attributes: eBPF.

Extended Berkeley Packet Filter (eBPF) [4] is a facility of the
kernel which allows code to be loaded and run within the context
of the kernel itself. In order to ensure the integrity and stability of
the system, a number of constraints are put in place that limit what
eBPF code can do at runtime.

Even with these restrictions, there is support for writing Linux
Security Module (LSM) hooks which can reject specific operations
ranging from mapping memory to renaming files. Unfortunately,
it doesn’t appear to support enough of the functionality required
to implement the proposed scheme; but with the right changes,
expanded under Technical Limitations, it could.

2 ENFORCING SBOMS AT RUNTIME

Once upstream Linux incorporates the required eBPF functionality,
an operational team would have the ability to prevent modification
to particular files and could then choose to bless only that software
which meets a given criteria and know that it won’t undergo any
further changes, malicious or otherwise. The process of blessing
container images or files is done by recording the digest or signature
in the file’s extended attributes as part of the build pipeline.

A secure production configuration would make this step a prereq-
uisite before deployment to the environment. If any of the blessed
files are modified, IMA prevents the file from being used, returning

https://orcid.org/0009-0007-9149-3320
https://orcid.org/0009-0009-9760-9309
https://orcid.org/0009-0004-9809-9965
https://doi.org/10.1145/3605770.3625206
https://doi.org/10.1145/3605770.3625206

SCORED ’23, November 30, 2023, Copenhagen, Denmark

in-toto in-toto in-toto
attestation attestation attestation

Running
Workload
extended
fileattrs
Generated Record
SBOM Measurements

Figure 2: Chain of trust from code to running workload

-EPERM from all file operations. Access to files without a digest or
signature could be allowed or denied based on the risk posture of
the application.

3 MODIFYING A BUILD PIPELINE

An SBOM is used as the source of truth for dependencies used
within the application. If an SBOM is not available, an SBOM gen-
eration step must be added.

The build environment measures the inputs (source code, com-
pilers, etc.) and those measurements are then compared against val-
ues derived from entries in the SBOM. Optional validation against
publicly-available release artifacts can be done. If everything checks
out, the built asset is blessed with the appropriate IMA digests or
signatures and is ready for deployment.

SBOM formats are standardized and all common SBOM gener-
ation tools work with this technology stack. Tools such as Syft
[1] are popular because they automatically detect a variety of lan-
guages and frameworks, ensuring that all dependencies, including
transitive ones, are included for measurement.

Software vendors and open source projects are increasingly in-
cluding SBOM artifacts when new software versions are released.
When a library or dependency is imported into a project, its SBOM
can be used as a source of truth in addition to an SBOM generated
within a build pipeline. The in-toto attestation framework allows
for these imported SBOMs to show how they were derived, which
chains together all of the elements in your supply chain.

4 ADOPTION AT SCALE

This scheme can be easily implemented due to the increasingly com-
mon adoption of SBOMs and the ability to work against the direct-
deployable artifact (e.g. a container or Linux package). SBOMs
provide the inventory down to the file level and serve as a compli-
ance artifact. The blessed measurements are easy to encode into
the container by mutating the extended attributes and map directly
back to the SBOM, which itself maps back to the source code.

In production, having all of the enforcement mechanisms within
the Linux kernel [5] allows for an extra degree of trust without
sacrificing performance. Loading the eBPF program via Kubernetes
DaemonSet or container allows for deployment of the protection
without manipulating the underlying operating system, preserving
the so-called “golden images”.

As stated above, this scheme unfortunately cannot be imple-
mented today. The next section highlights the mechanisms that
would need to exist in order to implement it, but isn’t feasible in
today’s Linux landscape. For anyone attempting something similar,

Alex Crawford, Eugene Yakubovich, & Rob Szumski

this would be a good reference and a potential jumping-off point
to do a deeper investigation.

5 TECHNICAL LIMITATIONS

The major limitation which prevents eBPF from protecting extended
attributes is the fact that they cannot be read from its context.
eBPF provides a number of helper functions which allow code
to interoperate with the kernel, but there isn’t one for reading
extended attributes from a given inode. [2]

If such a helper did exist, a simple implementation of this scheme
could look at the extended attributes to see if any of them belong
to the security class, and deny the file mutation if so.

Pointer-chasing from a given inode might be an option, if it
weren’t for the fact that extended attributes are filesystem-specific
and require calling into filesystem-specific code — disallowed in
eBPF’s context.

Calling out to a userspace process which does the extended
attribute lookup also proved to be a dead end, since LSM hooks
don’t have a mechanism for synchronous communication. There
has been some interest by the development community in adding
this functionality, but progress has been slowed by concerns from
upstream developers about the security impacts of such a change.
Assuming that these issues are addressed though, the full story can
be realized.

6 CONCLUSION

Enforcing the integrity of an application workload through its
SBOM allows security teams to use the SBOM as a representative
of run-time state. SBOMs enriched with vulnerability information
on a continual basis provide an accurate picture without requiring
invasive monitoring of the running workloads.

Our research has shown that all of the software supply chain
tools exist to support this behavior and that the series of Linux ker-
nel modifications required to make the proposed scheme complete
are technically viable. It remains to be seen if upstream consen-
sus can be reached to extend eBPF’s ability to reach extended file
attributes or allow synchronous communication with LSM hooks.

Adoption of this scheme is uniquely ideal for large scale de-
ployment because of the universal APIs offered by kernel-level
enforcement and eBPF’s ability to modify Linux behavior without
requiring custom patches or a heavily customized golden OS image.

REFERENCES

[1] Anchore. [n.d.]. Syft. https://github.com/anchore/syft/

[2] Alex Crawford. 2023. Getting acquainted with BPF as a security tool. Retrieved
August 30, 2023 from https://edgebit.io/blog/acquainted-with-bpf/

[3] Dmitry Kasatkin and mzohar. 2023. Linux Extended Verification Module (EVM).
Retrieved September 20, 2023 from https://sourceforge.net/p/linux-ima/wiki/
Home/#linux-extended-verification-module-evm

[4] kernel.org. 2023. BPF Documentation. Retrieved September 20, 2023 from
https://docs.kernel.org/bpf/

[5] kernel.org. 2023. Linux kernel. Retrieved August 12, 2023 from https://git.kernel.
org/pub/scm/linux/kernel/git/stable/linux.git/tree/security

[6] Gentoo Linux. 2023. Integrity Measurement Architecture. Retrieved September
20, 2023 from https://wiki.gentoo.org/wiki/Integrity Measurement_Architecture

https://github/anchore/syft
https://github.com/anchore/syft/
https://edgebit.io/blog/acquainted-with-bpf/
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://sourceforge.net/p/linux-ima/wiki/Home/#linux-extended-verification-module-evm
https://docs.kernel.org/bpf/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture

	Abstract
	1 Introduction
	2 Enforcing SBOMs at Runtime
	3 Modifying a Build Pipeline
	4 Adoption at Scale
	5 Technical Limitations
	6 Conclusion
	References

